The Synthesis of 3,4-2H₂-3Z-Hexenal and 6,6,6-2H₃-3Z-Hexenal.

Simon Fielder and Daryl D. Rowan.

The Horticulture and Food Research Institute of New Zealand Ltd., Private Bag 11030, Palmerston North, New Zealand.

Summary

6,6,6-2H3-3Z-Hexenal (3b) has been prepared in 89% yield and in greater than 94% purity by the oxidation of 6,6,6-2H₂-3Z-Hexen-1-ol (2b) with the Dess/Martin periodinane (1) in fluorotrichloromethane (freon 11). Use of the freon solvent greatly improved the recovery of this volatile aldehyde. Similarly the oxidation of 3,4-2H₂-3Z-hexen-1-ol (5) yielded 3,4-2H₂-3Z-hexenal (6) in a 92% isolated yield with a purity of greater than 99%. 3,4-2H2-3Z-Hexen-1-ol (5) was prepared in 87% by the catalytic deuterogenation of 3-hexyn-1-ol (4) in an improved synthetic procedure.

Key Words 6,6,6-2H3-3Z-hexenal, 3,4-2H2-3Z-hexenal, 3Z-hexenal, synthesis, deuterium.

Introduction

3Z-Hexenal (3a) occurs widely and is formed by the enzymatic and oxidative degradation of unsaturated lipid material^{1,2,3}. 3Z-Hexenal is a key impact aroma compound found in many fruit⁴, vegetables⁵ and leaves⁶ and its presence in processed fatty foods^{1,7,8} has been associated with taints and undesirable off-flavours. Release of 3Z-hexenal from disrupted plant tissue inhibits pollen germination¹⁰ while mixtures of volatiles containing 3Z-hexenal show semiochemical properties11. We required a practical synthesis of deuterium labelled 3Z-hexenal for use in the study of aroma biosynthesis.

Results and Discussion

3,4-2H₂-3Z-Hexenal (6) has been prepared by the pyridinium dichromate (PDC) oxidation of 3,4-2H₂-3Z-hexen-1-ol (5)8. However attempts to oxidise 6,6,6-2H3-3Z-Hexen-1-ol (2b)12 under these conditions failed. Other reagents, including DMSO-oxalyl chloride¹³, pyridinium chlorochromate¹⁴, Jones' Reagent¹⁵ and dichlorotris(triphenylphosphine)ruthenium(II)¹⁶ were also unsuccessful. Overoxidation to the acid, concomitant bond migration to the conjugated 2-ene system, dehydration and cyclization were all observed by GCMS and mass recoveries were always poor. Surprisingly the Dess/Martin (D/M) periodinane (1), prepared by the authors' original procedure¹⁷ was also found to be ineffective in achieving this apparently simple transformation. However a recent modification to the original

(1)

Received 22 November, 1994 Revised 19 December, 1994 466 S. Fielder and D.D. Rowan

preparation of (1)¹⁶ prompted us to reinvestigate the use of this reagent in the synthesis of deuterium labelled 3Z-hexenal (Scheme 1).

3Z-hexen-1-ol (2a) was added to a slurry of periodinane (1)¹⁸ in dichloromethane and the reaction was monitored by GC. After stirring at room temperature for 3 hours, (2a) was no longer present and a single, more volatile component was the only detectable product. On isolation, this material gave NMR and MS data consistent with 3Z-hexenal (3a). However the complete removal of dichloromethane (as judged by ¹H NMR) resulted in considerable losses of product. Recoveries were as low as 40% ¹⁹ when small quantities of (3a), typically 100mg or less, were handled.

An alternative solvent with greater volatility than dichloromethane was needed for ease of removal. Fluorotrichloromethane (Freon 11, bp 23.7°C) proved a useful substitute. In fluorotrichloromethane, 3Z-hexen-1-ol was converted cleanly to 3Z-hexenal by 1.5 equivalents of (1) over 18 hours at room temperature. After a conventional work up, the freon was removed at atmospheric pressure under a stream of dry nitrogen on a modified rotary evaporator²⁰ to give 3Z-hexenal (3a) in an 89% yield with a purity of 96% by GC. Physical data was identical to that of 3Z-hexenal prepared in dichloromethane and no fluorotrichloromethane was detected by ¹³C NMR.

Scheme 1. Synthesis of deuterated 3Z-Hexenals.

i, (1) (1.5eq), FCCl ₃, 18hrs., RT.

ii, D2, Lindlar's Catalyst.

Under these conditions $6.6.6^{-2}H_3$ -3Z-hexen-1-ol (2b) was oxidised quantitatively to $6.6.6^{-2}H_3$ -3Z-hexenal (3b) and recovered in 89% yield with a purity of greater than 94% by GC. ¹H NMR revealed a characteristic aldehydic triplet at 9.65 ppm with an associated signal in the ¹³C NMR spectrum at 199.2 ppm. GCMS gave a molecular ion of m/z=101. Decomposition was detected in samples stored under nitrogen at -20°C after one month, however decomposition was less in samples stored as solutions in pentane at -20°C.

Having established conditions to effect the oxidation of $6,6,6^{-2}H_3$ -3Z-hexen-1-ol (2b) to the corresponding aldehyde (3b) in high yield, we investigated a more direct synthesis of deuterium labelled 3Z-hexenal. 3-Hexyn-1-ol (4) is commercially available and is readily reduced to the corresponding cis-alkene by hydrogenation over Lindlar's catalyst. Under these conditions deuterium can be added stereospecifically to give a d_2 -cis-alkene without scrambling of the label. Hydrogenation of (4) with D_2 in the presence of poisoned Lindlar catalyst afforded $3,4^{-2}H_2$ -3Z-hexen-1-ol (5) in 87% yield with 99% purity by GC. No alkenic protons were detectable by 'H NMR,

while comparison with unlabelled 3Z-hexen-1-ol (2a) showed the five proton multiplet of the C2, C5 and OH signals had collapsed to a broad triplet (C2) and a second, less complex multiplet associated with the C5 and OH protons. Comparison of the 19 C NMR spectra showed the two alkenic singlets of (2a) had been replaced by a pair of 1:1:1 triplets. GCMS gave a molecular ion of m/z=102.

Oxidation of 3,4-2H₂-3Z-hexen-1-ol (5) with (1) in fluorotrichloromethane gave 3,4-2H₂-3Z-hexenal (6) in a 92% yield with a purity of 99% by GC. Comparisons between the ¹H and ¹⁹C NMR spectra of (6) and unlabelled 3Z-hexenal (3a) were consistent with deuteration at C3 and C4. No alkenic resonances were detected in the proton spectrum, while the associated collapse in multiplicity for protons at C2 and C5 was observed. No alkenic signals were observed in the carbon spectrum.

Conclusion

Two isotopomeric forms of deuterated 3Z-hexenal, 3,4-2H₂·3Z-hexenal (6) and 6,6,6-2H₃·3Z-hexenal (3b), have been prepared by the oxidation of hexenol precursors with the Dess/Martin periodinane (1) in fluorotrichloromethane. While an alternative synthesis of (6) has been described⁸, our current procedure is direct, high yielding and does not involve either high pressure hydrogenation or column chromatography.

Experimental

NMR spectra were recorded on a Bruker WP80SY (80 MHz.) spectrometer or a Joel GX270 (270MHz) in CDCl₃; data is reported in parts per million (δ) and is referenced to CHCl₃ at δ7.24 for ¹H spectra and δ77.0 for ¹³C. GC was carried out using an HP 5830A gas chromatograph fitted with a 30m x 0.25mm ID SE30 Alltech Econo CapTM column, 0.25μ film thickness, temperature programmed for 5min @ 40°C, 10°C/min, 5min @ 280°C, with 10psi N₂ head pressure. Retention times (rt) are reported in decimal minutes and purity as a % of total peak area excluding solvent. GCMS was carried out using an HP 5890 Series II gas chromatograph fitted with a 30m x 0.25mm ID DB1 column, 0.25μ film thickness, temperature programmed for 5min @ 40°C, 5°C/min, 20min @ 280°C, with 2psi He head pressure directly coupled to a VG70-250S mass spectrometer (VG Instruments, Manchester, UK) operating at 70eV.

All reagents [Aldrich Chemical Company, unless stated] were used without further purification unless stated. Dichloromethane [BDH] and fluorotrichloromethane (Freon 11) [E.I. Du Pont De Nemours & Co. (Inc.)] were freshly distilled from P_2O_5 under dry N_2 . Ether was diethyl ether [BDH analar]. Room temperature was $18-22^{\circ}C$.

3Z-Hexenal (3a) (Method A, dichloromethane as solvent.)

3Z-Hexen-1-ol (2a) (84.6mg, 0.85mmol) was added at room temperature to a slurry of Dess-Martin periodinane (1)¹⁸ (0.54g, 1.27mmol) in dichloromethane (10ml) and the mixture was stirred for 3hrs. Solid material was removed by filtration and the combined filtrate and rinsings (CH₂Cl₂, 2x15ml) were washed firstly with a solution of 0.5 M Na₂S₂O₃.5H₂O in saturated NaHCO₃ (20ml), then water (20ml) and saturated brine (20ml). The organic phase was dried over MgSO₄, filtered and concentrated on a rotary evaporator under reduced pressure (450 mmHg) at 0°C to give (3a) as a clear mobile oil, (32.3mg, 39%), GC rt 8.09 (94%). ¹H NMR δ, 0.99 (3H, t, J=7.7Hz, CH₃-), 2.06

(2H, m, CH_3CH_2 -), 3.17 (2H, dd, J=7.3Hz, J=1.5Hz, $-CH_2$ -CHO), 5.46-5.75 (2H, m, -CH=CH-), 9.66 (1H, t, J=1.5Hz, -CHO). ¹³C NMR δ , 13.7 (C-6), 20.7 (C-5), 42.5 (C-2), 117.5 (C-3), 137.1 (C-4), 199.2 (C-1). MS m/z rel. int. 98 (M⁺, 11.4), 83 (20.0), 80 (11.8), 69 (36.4), 55 (28.9), 41 (100), 39 (27.9).

3Z-Hexenal (3a) (Method B, fluorotrichloromethane as solvent.)

3Z-Hexen-1-ol (2a) (84.6mg, 0.85mmol) was added at room temperature to a slurry of Dess-Martin periodinane (1)¹⁶ (0.54g, 1.27mmol) in fluorotrichloromethane (15ml) and the reaction mixture was stirred for 18hrs. The slurry was filtered directly with rinsings (2x15ml FCCl₃) into a separating funnel and partitioned against a solution of 0.5 M Na₂S₂O₃,5H₂O in saturated NaHCO₃ (30ml). The lower, organic phase was run off and the aqueous residue was re-extracted with a further 20ml of FCCl₃. The combined organic phases were dried (MgSO₄) and filtered through a sintered glass funnel pressurized by the freon vapour. FCCl₃ was removed by slow distillation under a blanket of dry N₂ (20ml/min) at atmospheric pressure in a rotary evaporator fitted with a dry-ice/acetone cold trap (water bath temperature at 24°C) to give (3a) as a clear mobile oil (71.3mg, 89%). GC rt 8.09 (96%). Data as above.

6,6,6-2H₃-3Z-Hexenal (3b)

6,6,6- 2 H₃-3Z-Hexen-1-ol (2b) (115.7mg, 1.12mmol) was oxidised with Dess/Martin periodinane (1) (0.713g, 1.68mmol) in fluorotrichloromethane (15ml) by method B to yield (3b) as a clear mobile oil (100.9mg, 89%) GC rt 8.13 (94%). ¹H NMR (270MHz) δ , 2.06 (2H, d, J=7Hz, CD₃CH₂-), 3.17 (2H, dd, J=7.3Hz, J=1.5Hz, -CH₂-CHO), 5.46-5.75 (2H, m, -CH=CH-), 9.65 (1H, t, J=1.5Hz, CHO). ¹³C NMR (270MHz) δ , 20.8 (C-5), 42.5 (C-2), 117.5 (C-3), 137.1 (C-4), 199.2 (C-1). MS m/z rel. int. 101 (M⁺, 33.2), 83 (34.6), 72 (84.3), 58 (29.3), 55 (38.2), 43 (100), 42 (93.2), 39 (30.7).

3,4-2H₂-3Z-Hexen-1-ol (5)

3-Hexyn-1-ol (4) (0.898g, 9.15mmol) was added at room temperature to a slurry of Lindlar's catalyst (5% Pd on CaCO₃ poisoned with Pb) (0.25g) in pentane (20ml) and quinoline (0.2ml). The reaction flask was swept with D₂ gas (99.8% atom D) and the contents was stirred vigorously while the uptake of D₂ was monitored. An hydrogenation apparatus similar to that described by Vogel was used for this purpose²¹. After 1.5hrs, 220ml of D₂ (9.15mmol) had been consumed and (4) was no longer detectable by GC (rt 10.58). The reaction mixture was filtered through a plug of CaCO₃ and rinsed with ether (2x20ml). The filtrate was partitioned against 1.0M HCl saturated with NaCl (20ml), washed with saturated brine and dried over MgSO₄. Filtration and concentration *in vacuo* gave the crude product as viscous, pale yellow oil. Short path distillation (Kugelrohr) gave (5) as a colourless oil (0.8076g, 86.4%), bp 55-60°C/14mmHg. GC rt 9.83 (>99%). ¹H NMR δ , 0.93 (3H, t, J=7.8Hz, CH₃-), 1.85-2.08 (3H, m, CH₃CH₂, -OH), 2.27 (2H, t, J=6.6Hz, -CH₂CH₂OH), 3.58 (2H, t, J=6.6Hz, -CH₂CH₂OH). ¹³C NMR δ , 14.1 (C-6), 20.4 (C-5), 30.5 (C-2), 62.2 (C-1), 124.0 (t, C-3), 134.3 (t, C-4). MS m/z rel. int. 102 (M⁺, 6.1), 84 (45.7), 83 (45.0), 71 (47.9), 69 (80.0), 68 (62.9), 57 (60.0), 43 (82.1), 42 (100), 31 (37.9).

3,4-2H₂-3Z-Hexenal (6)

3,4- $^{2}\text{H}_{2}$ -3Z-Hexen-1-ol (5) (0.4573g, 4.48mmol) was oxidised with Dess/Martin periodinane (1) (2.85g, 6.71mmol) in fluorotrichloromethane (15ml) by method B to yield (6) as a clear mobile oil (0.4168g, 92%) GC rt 8.15 (99%). ^{1}H NMR δ , 0.99 (3H, t, J=7.7Hz, CH₃-), 2.05 (2H, m, CH₃CH₂-), 3.18 (2H, bs, -CH₂CHO), 9.65 (1H, t, J=1.5Hz, -CHO). ^{13}C NMR δ , 13.8 (C-6), 20.7 (C-5), 42.3 (C-2), 199.4 (C-1), C-3 and C-4 not observed. MS m/z rel. int. 100 (M⁺, 21.8), 85 (22.6), 82 (14.8), 71 (58.7), 57 (43.3), 43 (81.9), 42 (100), 40 (31.8).

References

- Aruoma, O.I. and Halliwell, B. -Free Radicals and Food Additives, Taylor and Frances, London, 1991
- 2. Hatanaka, A., Kajiwara, T. and Sekiya, J. -Chem. and Phys. of Lipids 44: 341-361, (1987)
- 3. Berger, R.G., Kler, A. and Drawert, F. -Biochim. Biophys. Acta 883: 523-530, (1986)
- For example: Apples:- Marton, I.D. and MacLeod, A.J. -Food Flavours, Part C, The Flavour of fruits. Elsevier, Amsterdam, 1990. Kiwifruit:- Young, H., Perera, C.O. and Paterson, V.J. -J. Sci. Food Agric. 58: 519-522, (1992). Plums:- Dirninger, N., Schaeffer, A. and Humbert, N. -Sciences-des-Aliments. 9: 4, 725-740 (1989)
- For example: Tomatoes:- Baldwin, E.A., Nisperos-Carriedo, M.O., Baker, R. and Scott, J.W.-J. Ag. Food Chem. 39: 6, 1135-1140 (1991). Baldwin, E.A., Nisperos-Carriedo, M.O. and Moshonas, M.G. -J. Am. Soc. Hort. Sci. 116: 2, 265-269, (1991). Cucumbers:- Schieberle, P., Ofner, S. and Grosch, W.-J. Food Sci. 55: 1, 193-195, (1990)
- For example: Tea:- Kitamura, A., Matsui, K., Kajiwara, T. and Hatanaka, A. -Plant Cell Phys. 33: 4, 493-496, (1992). Sekiya, J., Kajiwara, T. and Hatanaka, .A -Plant Cell Phys. 25: 2, 269-280 (1984). Tomatoes:- Buttery, R.G., Ling, L.C. and Light, D.M. -J. Ag. Food Chem. 35: 6, 1039-1042, (1987)
- 7. Widder, S., Sen, A. and Grosch, W. -Z. Lebensm. Unters. Forsch. 193: 1, 32-35 (1991)
- 8. Guth, H, and Grosch, W. -Lebensm. Wiss. Technol. 23: 6, 513-522, (1990)
- Grosch, W., Konopka, U.C. and Guth, H. -Lipid Oxidation In Food, (Edited by St. Angelo, A.J.), American Chemical Society, Washington, D.C., 1992
- Hamilton-Kemp, T.R., Loughrin, J.H., Archbold, D.D. and Andersen, R.A. -J. Ag. Food
 Chem. <u>39</u>: 5, 952-956 (1991)
- Turlings, T.C.J., Tumlinson, J.H., Heath, R.R., Proveaux, A.T. and Doolittle, R.E. -J. Chem.
 Ecol. <u>17</u>: 11, 2235-2251 (1991)
- 12. Brenstrum, T., Brimble, M.A., Rush, C.J., Shaw, G.J. and Reid, D.C.W. -J. Labelled Comp. Radiopharm. 31: 8, 629-635, (1992)
- Omura, K. and Swern, D. -Tetrahedron <u>34</u>, 1651 (1978)
 Mancuso, A.J., Huang, S.L. and Swern, D. -J. Org. Chem. 43: 2480-2482, (1978)
- 14. Corey, E.J. and Suggs, J.W. -Tetrahedron Lett. 31: 2647-2650, (1975)
- Fieser, L.F. and Fieser, M. -Reagents for Organic Synthesis, John Wiley and Sons, Inc., New York, 1: 142, 1968 and references therein.
- 16. Sharpless, K.B., Akashi, K. and Oshima, K. -Tetrahedron Lett. 29: 2503-2506, (1976)
- 17. Dess, D.B. and Martin, J.C. -J.Org. Chem. 48: 4145-4156, (1983)

470 S. Fielder and D.D. Rowan

- 18. Ireland, R.E. and Longbin, L. -J. Org. Chem. <u>58</u>: 2899, (1993)
- Similar losses were noted in the isolation of 2E-hexenal.
 Fielder, S. and Rowan, D.D. -J. Labelled Comp. Radiopharm. 34: 2, 199-204, (1993)
- 20. Fitted with a dry-ice/acetone condenser to recover the freon. Recoveries were typically greater than 90%.
- Vogel, A.I. -A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis (3rd Edition), Longman, London, page 471, 1972